Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm X ; 3: 100097, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704013

RESUMO

Oral delivery of peptides and proteins is hindered by their rapid proteolysis in the gastrointestinal tract and their inability to permeate biological membranes. Various drug delivery approaches are being investigated and implemented to overcome these obstacles. In the discussed study conducted in pigs, an investigation was undertaken to assess the effect of combination of a permeation enhancer - salcaprozate sodium, and a proteolysis inhibitor - soybean trypsin inhibitor, on the systemic exposure of the peptide teriparatide, following intraduodenal administration. Results demonstrate that this combination achieves significantly higher Cmax and AUC (~10- and ~20-fold respectively) compared to each of these methodologies on their own. It was thus concluded that an appropriate combination of different technological approaches may considerably contribute to an efficient oral delivery of biological macromolecules.

2.
J Bone Miner Res ; 36(6): 1060-1068, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33666947

RESUMO

The standard treatment of primary hypoparathyroidism (hypoPT) with oral calcium supplementation and calcitriol (or an analog), intended to control hypocalcemia and hyperphosphatemia and avoid hypercalciuria, remains challenging for both patients and clinicians. In 2015, human parathyroid hormone (hPTH) (1-84) administered as a daily subcutaneous injection was approved as an adjunctive treatment in patients who cannot be well controlled on the standard treatments alone. This open-label study aimed to assess the safety and efficacy of an oral hPTH(1-34) formulation as an adjunct to standard treatment in adult subjects with hypoparathyroidism. Oral hPTH(1-34) tablets (0.75 mg human hPTH(1-34) acetate) were administered four times daily for 16 consecutive weeks, and changes in calcium supplementation and alfacalcidol use, albumin-adjusted serum calcium (ACa), serum phosphate, urinary calcium excretion, and quality of life throughout the study were monitored. Of the 19 enrolled subjects, 15 completed the trial per protocol. A median 42% reduction from baseline in exogenous calcium dose was recorded (p = .001), whereas median serum ACa levels remained above the lower target ACa levels for hypoPT patients (>7.5 mg/dL) throughout the study. Median serum phosphate levels rapidly decreased (23%, p = .0003) 2 hours after the first dose and were maintained within the normal range for the duration of the study. A notable, but not statistically significant, median decrease (21%, p = .07) in 24-hour urine calcium excretion was observed between the first and last treatment days. Only four possible drug-related, non-serious adverse events were reported over the 16-week study, all by the same patient. A small but statistically significant increase from baseline quality of life (5%, p = .03) was reported by the end of the treatment period. Oral hPTH(1-34) treatment was generally safe and well tolerated and allowed for a reduction in exogenous calcium supplementation, while maintaining normocalcemia in adult patients with hypoparathyroidism. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Hipoparatireoidismo , Teriparatida , Adulto , Calcitriol , Cálcio , Humanos , Hipoparatireoidismo/tratamento farmacológico , Hormônio Paratireóideo/efeitos adversos , Qualidade de Vida , Teriparatida/efeitos adversos
3.
J Med Chem ; 60(12): 5209-5215, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28564542

RESUMO

Serine hydrolases are susceptible to potent reversible inhibition by boronic acids. Large collections of chemically diverse boronic acid fragments are commercially available because of their utility in coupling chemistry. We repurposed the approximately 650 boronic acid reagents in our collection as a directed fragment library targeting serine hydrolases and related enzymes. Highly efficient hits (LE > 0.6) often result. The utility of the approach is illustrated with the results against autotaxin, a phospholipase implicated in cardiovascular disease.


Assuntos
Ácidos Borônicos/química , Diester Fosfórico Hidrolases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Nitrilas/química , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/química , Bibliotecas de Moléculas Pequenas/química , Ressonância de Plasmônio de Superfície
4.
J Biol Chem ; 289(35): 24238-49, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25006253

RESUMO

It is well established that widely expressed PTK7 is essential for vertebrate tissue morphogenesis. In cancer, the functionality of PTK7 is selectively regulated by membrane type-1 matrix metalloproteinase (MT1-MMP), ADAMs (a disintegrin domain and metalloproteinases), and γ-secretase proteolysis. Here, we established that the full-length membrane PTK7, its Chuzhoi mutant with the two functional MT1-MMP cleavage sites, and its L622D mutant with the single inactivated MT1-MMP cleavage site differentially regulate cell motility in a two-dimensional versus three-dimensional environment. We also demonstrated that in polarized cancer cells, the levels of PTK7 expression and proteolysis were directly linked to the structure and kinetics of cell protrusions, including lamellipodia and invadopodia. In the functionally relevant and widely accepted animal models of metastasis, mouse and chick embryo models, both the overexpression and knock-out of PTK7 in HT1080 cells abrogated metastatic dissemination. Our analysis of human tissue specimens confirmed intensive proteolysis of PTK7 in colorectal cancer tumors, but not in matching normal tissue. Our results provide convincing evidence that both PTK7 expression and proteolysis, rather than the level of the cellular full-length PTK7 alone, contribute to efficient directional cell motility and metastasis in cancer.


Assuntos
Moléculas de Adesão Celular/metabolismo , Movimento Celular , Fibrossarcoma/patologia , Metástase Neoplásica , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Fibrossarcoma/enzimologia , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Proteólise
5.
J Inherit Metab Dis ; 37(5): 791-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24619150

RESUMO

OBJECTIVE: Acyl-CoA oxidase (ACOX1) deficiency is a rare disorder of peroxisomal very-long chain fatty acid oxidation. No reports detailing attempted treatment, longitudinal imaging, or neuropathology exist. We describe the natural history of clinical symptoms and brain imaging in two siblings with ACOX1 deficiency, including the younger sibling's response to allogeneic unrelated donor hematopoietic stem cell transplantation (HSCT). METHODS: We conducted retrospective chart review to obtain clinical history, neuro-imaging, and neuropathology data. ACOX1 genotyping were performed to confirm the disease. In vitro fibroblast and neural stem cell fatty acid oxidation assays were also performed. RESULTS: Both patients experienced a fatal neurodegenerative course, with late-stage cerebellar and cerebral gray matter atrophy. Serial brain magnetic resonance imaging in the younger sibling indicated demyelination began in the medulla and progressed rostrally to include the white matter of the cerebellum, pons, midbrain, and eventually subcortical white matter. The successfully engrafted younger sibling had less brain inflammation, cortical atrophy, and neuronal loss on neuro-imaging and neuropathology compared to the untreated older sister. Fibroblasts and stem cells demonstrated deficient very long chain fatty acid oxidation. INTERPRETATION: Although HSCT did not halt the course of ACOX1 deficiency, it reduced the extent of white matter inflammation in the brain. Demyelination continued because of ongoing neuronal loss, which may be due to inability of transplant to prevent progression of gray matter disease, adverse effects of chronic corticosteroid use to control graft-versus-host disease, or intervention occurring beyond a critical point for therapeutic efficacy.


Assuntos
Acil-CoA Oxidase/deficiência , Encefalopatias Metabólicas Congênitas/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Encéfalo/patologia , Encefalopatias Metabólicas Congênitas/enzimologia , Encefalopatias Metabólicas Congênitas/patologia , Pré-Escolar , Evolução Fatal , Feminino , Movimentos da Cabeça/fisiologia , Humanos , Lactente , Recém-Nascido , Masculino , Hipotonia Muscular/etiologia , Células-Tronco Neurais/transplante , Irmãos , Resultado do Tratamento
6.
Proc Natl Acad Sci U S A ; 111(1): 173-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24347635

RESUMO

Covalent inhibition is a reemerging paradigm in kinase drug design, but the roles of inhibitor binding affinity and chemical reactivity in overall potency are not well-understood. To characterize the underlying molecular processes at a microscopic level and determine the appropriate kinetic constants, specialized experimental design and advanced numerical integration of differential equations are developed. Previously uncharacterized investigational covalent drugs reported here are shown to be extremely effective epidermal growth factor receptor (EGFR) inhibitors (kinact/Ki in the range 10(5)-10(7) M(-1)s(-1)), despite their low specific reactivity (kinact ≤ 2.1 × 10(-3) s(-1)), which is compensated for by high binding affinities (Ki < 1 nM). For inhibitors relying on reactivity to achieve potency, noncovalent enzyme-inhibitor complex partitioning between inhibitor dissociation and bond formation is central. Interestingly, reversible binding affinity of EGFR covalent inhibitors is highly correlated with antitumor cell potency. Furthermore, cellular potency for a subset of covalent inhibitors can be accounted for solely through reversible interactions. One reversible interaction is between EGFR-Cys797 nucleophile and the inhibitor's reactive group, which may also contribute to drug resistance. Because covalent inhibitors target a cysteine residue, the effects of its oxidation on enzyme catalysis and inhibitor pharmacology are characterized. Oxidation of the EGFR cysteine nucleophile does not alter catalysis but has widely varied effects on inhibitor potency depending on the EGFR context (e.g., oncogenic mutations), type of oxidation (sulfinylation or glutathiolation), and inhibitor architecture. These methods, parameters, and insights provide a rational framework for assessing and designing effective covalent inhibitors.


Assuntos
Resistência a Medicamentos , Inibidores Enzimáticos/síntese química , Receptores ErbB/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Química Farmacêutica , Cisteína/química , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/química , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Oxigênio/química , Fosforilação , Ligação Proteica , Conformação Proteica , Quinazolinas/química , Transdução de Sinais
7.
Bioorg Chem ; 39(5-6): 192-210, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21872901

RESUMO

Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/metabolismo , Domínio Catalítico , Descoberta de Drogas , Cinética , Fosforilação
8.
Biochemistry ; 50(8): 1412-20, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21222488

RESUMO

Human thymidine phosphorylase (hTP) is responsible for thymidine (dT) homeostasis, promotes angiogenesis, and is involved in metabolic inactivation of antiproliferative agents that inhibit thymidylate synthase. Understanding its transition state structure is on the path to design transition state analogues. Arsenolysis of dT by hTP permits kinetic isotope effect (KIE) analysis of the reaction by forming thymine and the chemically unstable 2-deoxyribose 1-arsenate. The transition state for the arsenolytic reaction was characterized using multiple KIEs and computational analysis. Transition state analysis revealed a concerted bimolecular (A(N)D(N)) mechanism. A transition state constrained to match the intrinsic KIE values was found using density functional theory (B3LYP/6-31G*). An active site histidine is implicated as the catalytic base responsible for activation of the arsenate nucleophile and stabilization of the thymine leaving group during the isotopically sensitive step. At the transition state, the deoxyribose ring exhibits significant oxocarbenium ion character with bond breaking (r(C-N) = 2.45 Å) nearly complete and minimal bond making to the attacking nucleophile (r(C-O) = 2.95 Å). The transition state model predicts a deoxyribose conformation with a 2'-endo ring geometry. Transition state structure for the slow hydrolytic reaction of hTP involves a stepwise mechanism [Schwartz, P. A., Vetticatt, M. J., and Schramm, V. L. (2010) J. Am. Chem. Soc. 132, 13425-13433], in contrast to the concerted mechanism described here for arsenolysis.


Assuntos
Arseniatos/química , Arseniatos/metabolismo , Timidina Fosforilase/metabolismo , Timidina/química , Timidina/metabolismo , Biocatálise , Domínio Catalítico , Humanos , Cinética , Modelos Moleculares , Timidina Fosforilase/química
9.
J Am Chem Soc ; 132(38): 13425-33, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20804144

RESUMO

Human thymidine phosphorylase (hTP) is responsible for thymidine (dT) homeostasis, and its action promotes angiogenesis. In the absence of phosphate, hTP catalyzes a slow hydrolytic depyrimidination of dT yielding thymine and 2-deoxyribose (dRib). Its transition state was characterized using multiple kinetic isotope effect (KIE) measurements. Isotopically enriched thymidines were synthesized enzymatically from glucose or (deoxy)ribose, and intrinsic KIEs were used to interpret the transition state structure. KIEs from [1'-(14)C]-, [1-(15)N]-, [1'-(3)H]-, [2'R-(3)H]-, [2'S-(3)H]-, [4'-(3)H]-, and [5'-(3)H]dTs provided values of 1.033 ± 0.002, 1.004 ± 0.002, 1.325 ± 0.003, 1.101 ± 0.004, 1.087 ± 0.005, 1.040 ± 0.003, and 1.033 ± 0.003, respectively. Transition state analysis revealed a stepwise mechanism with a 2-deoxyribocation formed early and a higher energetic barrier for nucleophilic attack of a water molecule on the high energy intermediate. An equilibrium exists between the deoxyribocation and reactants prior to the irreversible nucleophilic attack by water. The results establish activation of the thymine leaving group without requirement for phosphate. A transition state constrained to match the intrinsic KIEs was found using density functional theory. An active site histidine (His116) is implicated as the catalytic base for activation of the water nucleophile at the rate-limiting transition state. The distance between the water nucleophile and the anomeric carbon (r(C-O)) is predicted to be 2.3 A at the transition state. The transition state model predicts that deoxyribose adopts a mild 3'-endo conformation during nucleophilic capture. These results differ from the concerted bimolecular mechanism reported for the arsenolytic reaction (Birck, M. R.; Schramm, V. L. J. Am. Chem. Soc. 2004, 126, 2447-2453).


Assuntos
Timidina Fosforilase/metabolismo , Timidina/metabolismo , Humanos , Hidrólise , Modelos Moleculares
10.
PLoS One ; 4(9): e7044, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19763260

RESUMO

BACKGROUND: Reprogramming human somatic cells to pluripotency represents a valuable resource for the development of in vitro based models for human disease and holds tremendous potential for deriving patient-specific pluripotent stem cells. Recently, mouse neural stem cells (NSCs) have been shown capable of reprogramming into a pluripotent state by forced expression of Oct3/4 and Klf4; however it has been unknown whether this same strategy could apply to human NSCs, which would result in more relevant pluripotent stem cells for modeling human disease. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we show that OCT3/4 and KLF4 are indeed sufficient to induce pluripotency from human NSCs within a two week time frame and are molecularly indistinguishable from human ES cells. Furthermore, human NSC-derived pluripotent stem cells can differentiate into all three germ lineages both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: We propose that human NSCs represent an attractive source of cells for producing human iPS cells since they only require two factors, obviating the need for c-MYC, for induction into pluripotency. Thus, in vitro human disease models could be generated from iPS cells derived from human NSCs.


Assuntos
Lobo Frontal/embriologia , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco/citologia , Diferenciação Celular , Linhagem da Célula , Células Germinativas/citologia , Humanos , Cariotipagem , Fator 4 Semelhante a Kruppel , Microscopia de Fluorescência/métodos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Biochemistry ; 46(24): 7284-92, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17503776

RESUMO

The photolysis of adenosylcobalamin (coenzyme B12) results in homolytic cleavage of the Co-C5' bond, forming cob(II)alamin and the 5'-deoxyadenosyl radical. In the presence of molecular oxygen, it has been proposed that the primary reaction is interception of the 5'-deoxyadenosyl radical by O2 to form adenosine-5'-aldehyde as the product (Hogenkamp, H. P. C., Ladd, J. N., and Barker, H. A. (1962) J. Biol. Chem. 237, 1950-1952). 5'-Peroxyadenosine is here found to be the initial nucleoside product of this reaction and found to decompose to adenosine-5'-aldehyde. Evidence indicates that 5'-peroxyadenosine arises from the hydrolysis of 5'-peroxyadenosylcobalamin, with the formation of cob(III)alamin. 5'-Peroxyadenosine undergoes further decomposition to adenosine-5'-aldehyde as the major final product of aerobic photolysis as well as to adenosine and adenine as minor products. In a cobalamin-dependent process, 5'-peroxyadenosine becomes re-ligated to cob(III)alamin to form 5'-peroxyadenosylcobalamin, which quickly decomposes to adenosine-5'-aldehyde and cob(III)alamin. This is supported by spectrophotometric observations of both rapidly photolyzed adenosylcobalamin and the reaction of cob(III)alamin with excess 5'-peroxyadenosine. 5'-Peroxyadenosine also slowly undergoes cobalamin-independent decomposition to adenosine-5'-aldehyde and the minor products adenosine and adenine. The present study provides a detailed description of the products initially formed when aqueous, homolytically cleaved adenosylcobalamin reacts with molecular oxygen and provides a detailed description of the behavior of those products subsequent to photolysis.


Assuntos
Cobamidas/química , Cobamidas/efeitos da radiação , Adenosina/análogos & derivados , Adenosina/química , Aerobiose , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Fotólise , Espectrofotometria , Vitamina B 12/análogos & derivados , Vitamina B 12/química
12.
Protein Sci ; 16(6): 1157-64, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17525464

RESUMO

The reaction of adenosylcobalamin-dependent dioldehydrase with 1,2-propanediol gives rise to a radical intermediate observable by EPR spectroscopy. This reaction requires a monovalent cation such as potassium ion. The radical signal arises from the formation of a radical pair comprised of the Co(II) of cob(II)alamin and a substrate-related radical generated upon hydrogen abstraction by the 5'-deoxyadenosyl radical. The high-field asymmetric doublet arising from the organic radical has allowed investigation of its composition and environment through the use of EPR spectroscopic techniques. To characterize the protonation state of the oxygen substituents in the radical intermediate, X-band EPR spectroscopy was performed in the presence of D(2)O and compared to the spectrum in H(2)O. Results indicate that the unpaired electron of the steady-state radical couples to a proton on the C(1) hydroxyl group. Other spectroscopic experiments were performed, using either potassium or thallous ion as the activating monovalent cation, in an attempt to exploit the magnetic nature of the (205,203)Tl nucleus to identify any intimate interaction of the radical intermediate with the activating cation. The radical intermediate in complex with dioldehydrase, cob(II)alamin and one of the activating monovalent cations was observed using EPR, ENDOR, and ESEEM spectroscopy. The spectroscopic evidence did not implicate a direct coordination of the activating cation and the substrate derived radical intermediate.


Assuntos
Cátions Monovalentes/química , Propanodiol Desidratase/química , Solventes/química , Sítios de Ligação , Cátions Monovalentes/metabolismo , Cobamidas/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Químicos , Estrutura Molecular , Potássio/química , Potássio/metabolismo , Propanodiol Desidratase/metabolismo , Prótons , Tálio/química , Tálio/metabolismo
13.
Biochemistry ; 46(24): 7293-301, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17516630

RESUMO

The complex of dioldehydrase with adenosylcobalamin (coenzyme B12) and potassium ion reacts with molecular oxygen in the absence of a substrate to oxidize coenzyme and inactivate the complex. In this article, high performance liquid chromatography and mass spectral analysis are used to identify the nucleoside products resulting from oxygen inactivation. The product profile indicates that oxygen inactivation proceeds by direct reaction of molecular oxygen with the 5'-deoxyadenosyl radical and cob(II)alamin. Formation of 5'-peroxyadenosine as the initial nucleoside product chemically correlates this reaction with aerobic, aqueous photoinduced homolytic cleavage of adenosylcobalamin (Schwartz, P. A., and Frey, P. A., (2007) Biochemistry, in press), indicating that both reactions proceed through similar chemical intermediates. The oxygen inactivation of the enzyme-coenzyme complex shows an absolute requirement for the same monocations required in catalysis by dioldehydrase. Measurements of the dissociation constants for adenosylcobalamin from potassium-free (Kd = 16 +/- 2 microM) or potassium-bound dioldehydrase (Kd = 0.8 +/- 0.2 microM) reveal that the effect of the monocation in stimulating oxygen sensitivity cannot be explained by an effect on the binding of coenzyme to the enzyme. Cross-linking experiments suggest that the full quaternary structure is assembled in the absence of potassium ion under the experimental conditions. The results indicate that dioldehydrase likely harvests the binding energy of the activating monocation to stimulate the homolytic cleavage of the Co-C5' bond in adenosylcobalamin.


Assuntos
Cobamidas/química , Cobamidas/metabolismo , Potássio/metabolismo , Propanodiol Desidratase/química , Propanodiol Desidratase/metabolismo , Carbono/química , Cobalto/química , Cinética , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Propanodiol Desidratase/antagonistas & inibidores , Espectrofotometria
14.
J Phys Chem A ; 109(15): 3372-82, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16833672

RESUMO

By using direct and indirect electrochemical methods, rate constants (ko) for cyclopropane ring opening of radical anions derived from the one-electron reduction of trans-1-benzoyl-2-phenylcyclopropane, trans-1-benzoyl-2-vinylcyclopropane, 2-methylenecyclopropyl phenyl ketone, spiro[anthracene-9,1'-cyclopropan-10-one], 3-cyclopropylcyclohex-2-en-1-one, and 3-(1-methylcyclopropyl)cyclohex-2-en-1-one were determined. Qualitatively, rate constants for ring opening of these (and other cyclopropyl- and cyclobutyl-containing radical anions) can be rationalized on the basis of the thermodynamic stability of the radical anion, the ability of substituents on the cyclopropyl group to stabilize the radical portion of the distonic radical anion, and the stability of the enolate portion of the distonic radical anion. On the basis of this notion, a thermochemical cycle for estimating deltaG(o) for ring opening was presented. For simple cyclopropyl-containing ketyl anions, a reasonable correlation between log(ko) and deltaG(o) was found, and stepwise dissociative electron transfer theory was applied to rationalize the results. Activation energies calculated with density functional theory (UB3LYP/6-31+G*) correlate reasonably well with measured log(ko). The derived log(ko) and deltaG(o) and log(ko) vs E(a) plots provide the basis for a "calibration curve" to predict rate constants for ring opening of radical anions derived from carbonyl compounds, in general.

15.
Science ; 298(5599): 1747-52, 2002 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-12399542

RESUMO

The molecular mechanisms by which central nervous system-specific genes are expressed only in the nervous system and repressed in other tissues remain a central issue in developmental and regulatory biology. Here, we report that the zinc-finger gene-specific repressor element RE-1 silencing transcription factor/neuronal restricted silencing factor (REST/NRSF) can mediate extraneuronal restriction by imposing either active repression via histone deacetylase recruitment or long-term gene silencing using a distinct functional complex. Silencing of neuronal-specific genes requires the recruitment of an associated corepressor, CoREST, that serves as a functional molecular beacon for the recruitment of molecular machinery that imposes silencing across a chromosomal interval, including transcriptional units that do not themselves contain REST/NRSF response elements.


Assuntos
Proteínas Cromossômicas não Histona , Cromossomos/genética , Inativação Gênica , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio , Proteínas de Transporte , Linhagem Celular , Cromossomos/metabolismo , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Proteínas Correpressoras , Biologia Computacional , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Proteína 2 de Ligação a Metil-CpG , Camundongos , Proteínas dos Microtúbulos , Modelos Genéticos , Canal de Sódio Disparado por Voltagem NAV1.2 , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Ratos , Proteínas Repressoras/química , Canais de Sódio/genética , Estatmina , Fatores de Transcrição/química , Transfecção
16.
J Biol Chem ; 277(37): 34556-67, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12091389

RESUMO

Caveolin-2 is the least well studied member of the caveolin gene family. It is believed that caveolin-2 is an "accessory protein" that functions in conjunction with caveolin-1. At the level of the ER, caveolin-2 interacts with caveolin-1 to form a high molecular mass hetero-oligomeric complex that is targeted to lipid rafts and drives the formation of caveolae. However, caveolin-2 is not required for caveolae formation, implying that it may fulfill some unknown regulatory role. Here, we present the first evidence that caveolin-2 is a phosphoprotein. We show that caveolin-2 undergoes Src-induced phosphorylation on tyrosine 19. To study this phosphorylation event in vivo, we generated a novel phospho-specific antibody probe that only recognizes phosphocaveolin-2 (Tyr(P)(19)). We then used NIH-3T3 cells stably overexpressing c-Src to examine the localization and biochemical properties of phosphocaveolin-2 (Tyr(P)(19)). Our results indicate that phosphocaveolin-2 (Tyr(P)(19)) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. Instead, phosphocaveolin-2 (Tyr(P)(19)) behaves as a monomer/dimer in velocity gradients. Thus, we conclude that the tyrosine phosphorylation of caveolin-2 (Tyr(P)(19)) may function as a signal that is recognized by the cellular machinery to induce the dissociation of caveolin-2 from caveolin-1 oligomers. We also demonstrate that (i) insulin-stimulation of adipocytes and (ii) integrin ligation of endothelial cells can both induce the tyrosine phosphorylation of caveolin-2 (Tyr(P)(19)). During integrin ligation, phosphocaveolin-2 (Tyr(P)(19)) co-localizes with activated FAK at focal adhesions. Thus, phosphocaveolin-2 (Tyr(P)(19)) may function as a docking site for Src homology domain-2 (SH2) domain containing proteins during signal transduction. In support of this notion, we identify several SH2 domain containing proteins, namely c-Src, NCK, and Ras-GAP, that interact with caveolin-2 in a phosphorylation-dependent manner. Furthermore, our co-immunoprecipitation experiments show that caveolin-2 and Ras-GAP are constitutively associated in c-Src expressing NIH-3T3 cells, but not in untransfected NIH-3T3 cells.


Assuntos
Cavéolas/química , Caveolinas/química , Caveolinas/metabolismo , Microdomínios da Membrana/química , Quinases da Família src/metabolismo , Células 3T3 , Animais , Células COS , Caveolina 1 , Caveolina 2 , Camundongos , Peso Molecular , Fosforilação , Coelhos , Tirosina/metabolismo , Vanadatos/farmacologia , Domínios de Homologia de src
17.
Development ; 129(6): 1435-42, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11880352

RESUMO

During development of the nervous system, neural progenitors arise in proliferative zones, then exit the cell cycle and migrate away from these zones. Here we show that migration of cerebellar granule cells out of their proliferative zone, the external granule cell layer (EGL), is impaired in Bdnf(-/-) mice. The reason for impaired migration is that BDNF directly and acutely stimulates granule cell migration. Purified Bdnf(-/-) granule cells show defects in initiation of migration along glial fibers and in Boyden chamber assays. This phenotype can be rescued by exogenous BDNF. Using time-lapse video microscopy we find that BDNF is acutely motogenic as it stimulates migration of individual granule cells immediately after addition. The stimulation of migration reflects both a chemokinetic and chemotactic effect of BDNF. Collectively, these data demonstrate that BDNF is directly motogenic for granule cells and provides a directional cue promoting migration from the EGL to the internal granule cell layer (IGL).


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Movimento Celular/genética , Cerebelo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Movimento Celular/efeitos dos fármacos , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas In Vitro , Camundongos , Camundongos Knockout , Microscopia de Vídeo
18.
J Neurosci ; 22(4): 1316-27, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11850459

RESUMO

Neurotrophins are key regulators of neuronal survival and function. Here we show that TrkB, the receptor for brain-derived neurotrophic factor (BDNF), is located at parallel fiber to Purkinje cell (PF/PC) synapses of the cerebellum. To determine the effects of TrkB receptor activation on synapse formation and function, we examined the parallel fiber to Purkinje cell synapses of mice with a targeted deletion of the BDNF gene. Although Purkinje cell dendrites are abnormal in BDNF -/- mice, PF/PC synapses are still able to form. Immunohistochemical analysis of mutant animals revealed the formation of numerous PF/PC synapses with the appropriate apposition of presynaptic and postsynaptic proteins. These synapses are functional, and no differences were detected in the waveform of evoked EPSCs, the amplitude of spontaneous mini-EPSCs, or the response to prolonged 10 Hz stimulus trains. However, paired-pulse facilitation, a form of short-term plasticity, is significantly decreased in BDNF -/- mice. Detailed ultrastructural analysis of the presynaptic terminals demonstrated that this change in synaptic function is accompanied by an increase in the total number of synaptic vesicles in mutant mice and a decrease in the proportion of vesicles that are docked. These data suggest that BDNF regulates both the mechanisms that underlie short-term synaptic plasticity and the steady-state relationship between different vesicle pools within the terminal.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/ultraestrutura , Animais , Fator Neurotrófico Derivado do Encéfalo/deficiência , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Calbindinas , Cerebelo/citologia , Dendritos/ultraestrutura , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Deleção de Genes , Técnicas In Vitro , Camundongos , Camundongos Knockout , Camundongos Mutantes , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Células de Purkinje/metabolismo , Células de Purkinje/ultraestrutura , Receptor trkB/metabolismo , Receptores de Glutamato/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...